Structure/function relationships in heterogeneous catalysis play an important role in catalyst design strategies. The combination of chemisorption of suitable probe molecules alongside application of infrared spectroscopy is an established technique for providing information on the metal crystallite morphology of supported metal catalysts. Following a review of key literature on this topic, a variety of experimental arrangements that may be adopted for this task are examined. Specifically, the adsorption of CO over a 5wt% Pd/Al2O3 catalyst is investigated using transmission and diffuse reflectance sampling options and two research grade spectrometers. Although comparable spectra are obtained on all the platforms examined, differences are noted. In particular, temperature-programmed IR spectroscopy on one platform enables resolution of two features assigned to linear CO bound to the Pd particles. The relevance of this sub-division of terminal sites with respect to selective hydrogenation reactions is briefly considered.