. Influence of a lipid bilayer on the conformational behavior of amphotericin B derivatives -a molecular dynamics study. Biophysical Chemistry, Elsevier, 2009, 141 (1) This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Author to whom the correspondence should be addressed.
A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT3
AbstractAmphotericin B (AmB) is an effective but very toxic antifungal antibiotic. In our laboratory a series of AmB derivatives of improved selectivity of action was synthesized and tested. To understand molecular basis of this improvement, comparative conformational studies of amphotericin B and its two more selective derivatives were carried out in an aqueous solution and in a lipid membrane. These molecular simulation studies revealed that within a membrane environment the conformational behavior of the derivatives differs significantly from the one observed for the parent molecule. Possible reasons for such a difference are analyzed. Furthermore, we hypothesize that the observed conformational transition within the polar head of AmB derivatives may lead to destabilization of antibioticinduced transmembrane channels. Consequently, the selective toxicity of the derivatives should increase as ergosterol-rich liquid-ordered domains are more rigid and conformationally ordered than their cholesterol-containing counterparts, and as such may better support less stable channel structure.