During the last years, the authors have synthesized, characterized, and studied the adsorption properties of nitroprussides, Prussian blue analogues, akaganeites, MeAPOs, metal-organic frameworks, and extremely high specific surface amorphous silica, which allowed the storage of about 11 wt.% of hydrogen in the form of ammonia. In this sense, using the solid-state reaction method, sol-gel methodologies, together with aluminosilicate, high silica and non-aluminosilicate zeolite synthesis methods, were described, moreover was explained how to prepare active carbons along with the synthesis of Prussian blue analogues (PBAs) and nitroprussides (NPs). In addition, the characterization of the materials of interest applying X-ray diffraction, thermogravimetric analysis, DRIFTS, and roomtemperature Mossbauer spectrometry was discussed. Besides, the concepts that define physical adsorption and examples of adsorption data, which were tested with the help of the Dubinin, osmotic adsorption and Langmuir-type isotherms, were defined. Later, the methodology was described for the measurement of adsorption data with the help of the volumetric method. Moreover, a description of the thermodynamics of adsorption, along with the methodology for the calculation of calorimetric data with the help of heat flow calorimeters together with the measurement of differential heats of adsorption data was developed. Finally, the different interaction forces that make possible adsorption were discussed.