DNA with a curved trajectory of its helix axis is called bent DNA, or curved DNA. Interestingly, biologically important DNA regions often contain this structure, irrespective of the origin of DNA. In the last decade, considerable progress has been made in clarifying one role of bent DNA in prokaryotic transcription and its mechanism of action. However, the role of bent DNA in eukaryotic transcription remains unclear. Our recent study raises the possibility that bent DNA is implicated in the "functional packaging" of transcriptional regulatory regions into chromatin. In this article, I review recent progress in bent DNA research in eukaryotic transcription, and summarize the history of bent DNA research and several subjects relevant to this theme. Finally, I propose a hypothesis that bent DNA structures that mimic a negative supercoil, or have a right-handed superhelical writhe, organize local chromatin infrastructure to help the very first interaction between cis-acting DNA elements and activators that trigger transcription.