Concentration of carbon dioxide gas has accelerated from the last two decades which cause drastic changes in the climatic conditions. In industries, carbon capture plants use volatile organic solvent which causes many environmental threats. So, a low-cost green absorbent has been formulated with nontoxicity and high selectivity properties for absorbing carbon dioxide gas. This paper contains the synthesis process along with the structure confirmation using 1 H NMR, 13 C NMR, FT-IR, and mass spectroscopy. Density, viscosity, and diffusivity are measured at different ranges with standard instruments. The kinetic studies were also conducted in a standard predefined-interface stirred-cell reactor. The kinetic parameters were calculated at different parameters like agitation speeds, absorption temperature, initial concentrations of ionic liquid, and partial pressure of carbon dioxide. The reaction regime of carbon dioxide absorption is found to be in fast reaction kinetics with pseudo first order. The reaction rate and the activation energy of CO2 absorption are experimentally determined in the range of 299 K to 333K with different initial concentrations of ionic liquid (0.1-1.1 kmol/m 3 ). The second order rate constant and activation energy of carbon dioxide absorption in the synthesized ionic liquid is found to be (6385.93 to 12632.01 m 3 mol-1 s-1) and 16.61 kJ mol −1 respectively. This solvent has shown great potential to absorb CO2 at large scale.