The electronic state spectroscopy of 2(5H)-thiophenone, C4H4OS, has been investigated by high-resolution vacuum ultraviolet photoabsorption in the 3.76–10.69 eV energy range using synchrotron radiation, together with novel quantum chemical calculations performed at the equation of motion coupled cluster singles and doubles (EOM-CCSD) level of theory. The major electronic transitions have been assigned to valence and Rydberg character, with relevant C=O, C=C and C–C stretching vibrations across the entire absorption spectrum. Photolysis lifetimes in the Earth’s atmosphere (0–50 km altitude) have been estimated from the absolute photoabsorption cross-sections, indicating that solar photolysis can be expected to be a strong sink mechanism.
Graphical abstract