Convective processes affect large-scale environments through cloud-radiation interaction, cloud microphysical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) have demonstrated to be capable of simulating convective-radiative responses to an imposed largescale forcing. The CRM-produced cloud and radiative properties have been utilized to study the convectiverelated processes and their ensemble effects on large-scale circulations. This review summarizes the recent progress on the understanding of convective processes with the use of CRM simulations, including precipitation processes; cloud microphysical and radiative processes; dynamical processes; precipitation efficiency; diurnal variations of tropical oceanic convection; local-scale atmosphere-ocean coupling processes; and tropical convective-radiative equilibrium states. Two different ongoing applications of CRMs to general circulation models (GCMs) are discussed: replacing convection and cloud schemes for studying the interaction between cloud systems and large-scale circulation, and improving the schemes for climate simulations.