The structures and some vertical excitation energies of third-row transition metal hexafluorides (MF 6 , M = Re, Os, Ir, Pt, Au, Hg) were calculated using the generalized-active-space configuration interaction (GASCI) theory based on the exact twocomponent (X2C) Hamiltonian. The spin−orbit coupling (SOC) was included at the Hartree−Fock level, enabling us to analyze the SOC at the orbital level (spinor-representation). The excitation spectra were assigned based on the double group, a relativistic group theory applicable to states with the SOC. This study provides a fundamental understanding of the ligand field splitting, including the SOC, that is useful for the photochemistry and spin chemistry involving heavy elements.