Human alpha (leukocyte) interferons contain two disulfide bonds between Cys-1 and Cys-98 and between Cys-29 and Cys-138. Reduction of interferon under native conditions leads to irreversible loss of antiviral activity; reduction in denaturant, followed by oxidation in native conditions, leads to restoration of activity. This behavior, unusual for disulfide-containing proteins, was studied by using a thiosulfonate derivative of subtype A of human alpha interferon (IFN-alpha A). The disulfide-free thiosulfonate formed at 25 degrees C has essentially no antiviral activity, while maintaining a conformation related to that of native IFN-alpha A. This species can regain activity after regeneration of its 29-138 disulfide, by thiol-disulfide interchange in native buffer. Incubation of the disulfide-free thiosulfonate under nonreducing conditions at 37 degrees C generates a monomeric species that has lost its native conformation as well as its ability to regain antiviral activity after thiol-disulfide interchange. These results explain the difficulty in obtaining, under native conditions, a reduced species that regains activity upon oxidation; complete reduction of IFN-alpha A in 100 mM 2-mercaptoethanol requires 37 degrees C, a temperature that promotes conformational decay of the disulfide-free form.