The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIRdomain dimerization interfaces required for signaling of the plant nucleotide-binding oligomerization domain-like receptors (NLRs) L6 from flax and disease resistance protein RPS4 from Arabidopsis. Here we show that the crystal structure of the TIR domain from the Arabidopsis NLR suppressor of npr1-1, constitutive 1 (SNC1) contains both an L6-like interface involving helices αD and αE (DE interface) and an RPS4-like interface involving helices αA and αE (AE interface). Mutations in either the AE-or DE-interface region disrupt cell-death signaling activity of SNC1, L6, and RPS4 TIR domains and full-length L6 and RPS4. Selfassociation of L6 and RPS4 TIR domains is affected by mutations in either region, whereas only AE-interface mutations affect SNC1 TIR-domain self-association. We further show two similar interfaces in the crystal structure of the TIR domain from the Arabidopsis NLR recognition of Peronospora parasitica 1 (RPP1). These data demonstrate that both the AE and DE self-association interfaces are simultaneously required for self-association and cell-death signaling in diverse plant NLRs.plant immunity | NLR | TIR domain | plant disease resistance | signaling by cooperative assembly formation P lants have evolved a sophisticated innate immune system to detect pathogens, in which plant resistance (R) proteins recognize pathogen proteins (effectors) in a highly specific manner. This recognition leads to the effector-triggered immunity (ETI) response that often induces a localized cell death known as the hypersensitive response (1). Most R proteins belong to the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family. NLRs are prevalent in the immune systems of plants and animals and provide resistance to a broad range of pathogens, including fungi, oomycetes, bacteria, viruses, and insects (2, 3). NLRs contain a central nucleotide-binding (NB) domain, often referred to as the nucleotide-binding adaptor shared by APAF-1, resistance proteins, and CED-4 (NB-ARC domain) (4) and a C-terminal leucine-rich repeat (LRR) domain. Plant NLRs can be further classified into two main subfamilies, depending on the presence of either a Toll/interleukin-1 receptor domain (TIR-NLR) or a coiled-coil domain (CC-NLR) at their N termini (5).The CC and TIR domains of many plant NLRs can autonomously signal cell-death responses when expressed ectopically in planta, and mutations in these domains within full-length proteins also compromise signaling, suggesting that these domains are responsible for propagating the resistance signal after activation of the receptor (6-14). Self-association of both TIR (8, 9, 11, 15) and CC (10,13,16,17) domains has been shown to be important for the signaling function. In animal NLRs, the formation of postactivation oligomeric complexes, such as the NLRC4/NAIP inflammasome or...