SUMMARYMany studies have examined the localization of gangliosides using anti-ganglioside antibodies, although widely differing conclusions have been reached. We now demonstrate that the apparent localization of gangliosides can be greatly influenced by the fixation method. Using monoclonal antibody (MAb) A2B5 (which reacts with a variety of gangliosides), hippocampal neurons were labeled at the cell surface when incubated with the antibody before fixation, but when incubated after fixation the cells displayed a variety of labeling patterns, depending on the fixation method. Biochemical analysis demonstrated that some of the fixatives (particularly acetone and methanol) significantly reduced or completely depleted cellular gangliosides, implying that the immunoreactivity observed with A2B5, and with other antibodies, was not due to gangliosides. When neurons were incubated with an anti-GD1b antibody prefixation, uniform labeling of the plasma membrane was observed, but after ganglioside depletion using biochemical inhibitors of ganglioside synthesis no cell surface labeling was detected. However, even in cells depleted of gangliosides, labeling of both the cell surface and intracellular compartments was observed when the anti-GD1b antibody was applied after fixation. Moreover, after fixation, antibodies to GM4 and GD2 reacted with hippocampal neurons, although these gangliosides are absent from these neurons. In contrast, the JONES antibody (which reacts with 9-O -acetylated GD3) labeled neurons with a similar pattern, essentially irrespective of the fixation method. These observations demonstrate that great care must be taken in assigning gangliosides to specific cell populations or to intracellular locations solely on the basis of use of anti-ganglioside antibodies, and suggest that optimal fixation conditions must be established for each anti-ganglioside antibody. (J Histochem Cytochem 45:611-618, 1997)