Present work is influenced by the requirement of investigation of rare earth intermetallics due to the nonavailability of theoretical details and least information from experimental results. An attempt has been made to analyse the structural, electronic, magnetic and thermal properties of DyNi using full potential linear augmented plane wave method based on density functional theory. DyNi differs from other members of lanthanides nickelates as in ground state it crystallizes in FeB phase rather than orthorhombic CrB structure. The equilibrium lattice constant, bulk modulus, and pressure derivative of bulk modulus are presented in four polymorphs (FeB, CrB, CsCl and NaCl) of DyNi. At equilibrium the cell volume of DyNi for FeB structure has been calculated as 1098.16 Bohr 3 which is comparable well with the experimental value 1074.75 Bohr 3 . The electronic band structure has been presented for FeB phase. The results for thermal properties, namely, thermal expansion coefficient, Gruneisen parameter, specific heat and Debye temperature at higher pressure and temperatures have been reported. The magnetic moments at equilibrium lattice constants have also been tabulated as the rare earth ions associated with large magnetic moments increase their utility in industrial field for the fabrication of electronic devices due to their magnetocaloric effect used in magnetic refrigeration.