Methasterone is a designer anabolic steroid that is prohibited for athletes and is monitored by anti-doping laboratories. In this work, our objective is to discover new human phase I metabolites, define their excretion kinetics for 30 days and analyze their phase II metabolism (sulfate, cysteine and N-acetylcysteine conjugates). Urine samples from four volunteers were analyzed by chromatographic techniques. Through gas chromatography coupled to mass spectrometry analysis it was possible to detect methasterone and its nine phase I metabolites in the urine samples after glucuronide enzymatic hydrolysis, from which one were previously unreported. These nine compounds were not excreted in free form. The new proposed metabolite is 17β-hydroxy-2α,17α-dimethyl-5β-androstan-3-one, obtained from the epimerization at C5. The 3α-hydroxy metabolite, currently monitored by anti-doping laboratories, was the most abundant and was detected for the longest time. Furthermore, four other long-term metabolites were identified. By ultra-performance liquid chromatography coupled to tandem mass spectrometry, only the drug and a known metabolite were detected after glucuronide hydrolysis, and phase II metabolites were not found. Thus, our results contribute to elucidating methasterone metabolism, including long-term metabolites besides of the 3α-hydroxy in routine doping analysis, which is very important due to variation in human metabolism.