Using the YgfO xanthine permease of Escherichia coli as a bacterial model for the study of the evolutionarily ubiquitous nucleobase-ascorbate transporter (NAT/NCS2) family, we performed a systematic Cys-scanning and site-directed mutagenesis of 14 putatively charged (Asp, Glu, His, Lys, or Arg) and 7 highly polar (Gln or Asn) residues that are predicted to lie in transmembrane helices (TMs). Of 21 single-Cys mutants engineered in the background of a functional YgfO devoid of Cys residues (C-less), only four are inactive or have marginal activity (H31C, N93C, E272C, D304C). The 4 residues are conserved throughout the family in TM1 (His-31), TM3 (Asn-93/Ser/Thr), TM8 (Glu-272), and putative TM9a (Asp-304/Asn/Glu). Extensive site-directed mutagenesis in wild-type background showed that H31N and H31Q have high activity and affinity for xanthine but H31Q recognizes novel purine bases and analogues, whereas H31C and H31L have impaired affinity for xanthine and analogues, and H31K or H31R impairs expression in the membrane. N93S and N93A are highly active but more promiscuous for recognition of analogues at the imidazole moiety of substrate, N93D has low activity, N93T has low affinity for xanthine or analogues, and N93Q or N93C is inactive. All mutants replacing Glu-272 or Asp-304, including E272D, E272Q, D304E, and D304N, are inactive, although expressed to high levels in the membrane. Finally, one of the 17 assayable single-Cys mutants, Q258C, was sensitive to inactivation by N-ethylmaleimide. The findings suggest that polar residues important for the function of YgfO cluster in TMs 1, 3, 8 and 9a.The nucleobase-ascorbate transporter (NAT) 2 or nucleobase-cation symporter-2 (NCS2) family is an evolutionarily ubiquitous family of purine, pyrimidine, and L-ascorbate transporters, with members specific for cellular uptake of uracil, xanthine, or uric acid (microbial and plant genomes) or vitamin C (mammalian genomes) (1, 2). Despite their importance for the recognition and uptake of several frontline purine-related drugs, NAT/NCS2 members have not been studied systematically at the molecular level, and high resolution structures or mechanistic models are missing. More than 1000 sequence entries are known, but few have been functionally characterized to date. The best studied eukaryotic member is UapA, a high affinity uric acid/xanthine:H ϩ symporter from the ascomycote Aspergillus nidulans (3-7). Studies with chimeric transporter constructs (3), site-directed mutagenesis, second-site suppressors, and kinetic inhibition analysis of ligand specificity have shown that a conserved NAT/NCS2 motif region between putative transmembrane helices 8 and 9 of UapA includes determinants of substrate recognition and selectivity, with at least one residue (Gln-408) implicated in binding with the imidazole moiety of purine (4), whereas a conserved QH motif at the middle of TM1 is important for activity and/or correct targeting to the plasma membrane (5), and an aromatic residue at the middle of TM12 (Phe-528) may act as a purine subst...