The contact between two surfaces initiates at surface asperities whose properties determine the mechanical behavior of the contact. The response of a nanometer-scaled single asperity onto flat surfaces is experimentally accessible using atomic force microscopy (AFM). The high spatial and force resolution of atomic force microscopy and spectroscopy enables to determine the mechanisms governing plastic deformation, friction, and wear down to the atomic scale. In this chapter, we describe three experimental methods based on atomic force microscopy and corresponding methods for statistical data analysis to determine: the hardness and the deformation mechanisms of metallic surfaces during indentation with an AFM tip and the mechanisms governing wear and friction of metallic surfaces.