Flare loops form an integral part of eruptive events, being detected in the range of temperatures from X-rays down to cool chromospheric-like plasmas. While the hot loops are routinely observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA), cool loops seen off-limb are rare. In this paper we employ unique observations of the SOL2017-09-10T16:06 X8.2-class flare which produced an extended arcade of loops. The Swedish 1-m Solar Telescope (SST) made a series of spectral images of the cool off-limb loops in the Ca ii 8542Å and the hydrogen Hβ lines. Our focus is on the loop apices. Non-LTE spectral inversion is achieved through the construction of extended grids of models covering a realistic range of plasma parameters. The Multilevel Accelerated Lambda Iterations (MALI) code solves the non-LTE radiative-transfer problem in a 1D externally-illuminated slab, approximating the studied loop segment. Inversion of the Ca ii 8542Å and Hβ lines yields two similar solutions, both indicating high electron densities around 2 × 10 12 cm −3 and relatively large microturbulence around 25 km s −1 . These are in reasonable agreement with other independent studies of the same or similar events. In particular, the high electron densities in the range 10 12 −10 13 cm −3 are consistent with those derived from the SDO's Helioseismic and Magnetic Imager white-light observations. The presence of such high densities in solar eruptive flares supports the loop interpretation of the optical continuum emission of stars which manifest superflares.