Numerous chemical pesticides were employed for a long time to manage pests, but their uncontrolled application harmed the health and the environment. Accurately quantifying pesticide residues is essential for risk evaluation and regulatory purposes. Numerous analytical methods have been developed and utilized to achieve sensitive and specific detection of pesticides in intricate samples like water, soil, food, and air. Electrochemical sensors based on amperometry, potentiometry, or impedance spectroscopy offer portable, rapid, and sensitive detection suitable for on‐site analysis. This study examines the potential of electrochemical sensors for the accurate evaluation of various effects of pesticides. Emphasizing the use of Graphene (GR), Graphene Oxide (GO), Reduced Graphene Oxide (rGO), and Graphdiyne composites, the study highlights their enhanced performance in pesticide sensing by stating the account of many actual sensors that have been made for specific pesticides. Computational studies provide valuable insights into the adsorption kinetics, binding energies, and electronic properties of pesticide‐graphene complexes, guiding the design and optimization of graphene‐based sensors with improved performance. Furthermore, the discussion extends to the emerging field of biopesticides. While the GR/GO/rGO based sensors hold immense future prospects, their existing limitations have also been discussed, which need to be solved with future research.