1,4-benzenedimethanethiol was chemisorbed from the vapor phase onto Au(111). The chemisorption geometry, molecular orientation, and bonding properties were studied at different degrees of surface coverage by photoelectron spectroscopy, metastable deexcitation spectroscopy, and near-edge x-ray absorption fine structure spectroscopy at the carbon K edge. Two main chemisorption regimes were identified: at low coverage the molecules adopt a flat configuration, then, as the molecular density of the first layer increases, the reduction of the available chemisorption sites induces the newly bonded molecules to assume a vertical alignment, with only one of the sulphur head groups interacting with the substrate. Experimental results were interpreted on the basis of theoretical calculations that we performed on the free molecule concerning the molecular orbitals' density of states and simulated x-ray absorption.