“…Thus, as an alternative to BFRs, the halogen-free flame retardant system has become the focus of interest. In current studies on PA6 with halogen-free flame retardant systems, research teams have mainly developed polyamide materials with high flame retardant performance by using the following four methods: (1) constructing an efficient flame retardant system by blending different components and utilizing the component synergistic effect [6,7,8,9,10,11,12,13,14]; (2) obtaining a new flame retardant system by bonding different flame retardant groups into one molecule [15,16,17,18,19,20,21]; (3) designing novel flame retardant chemical structures [22,23,24]; and (4) preparing intrinsically flame retardant polyamide [25,26]. However, traditional halogen-free flame retardants for polyamide, such as melamine polyphosphate (MPP) [27] and melamine cyanurate (MCA) [28], have been unable to meet commercial demands for improved physical-mechanical properties because of their low flame retardant efficiency.…”