Interactions between divalent alkali earth metal (DAEM) ions M (MABe,Mg, Ca, Sr, Ba) and the second stable glycine conformer in the gas phase, which can transfer into the ground-state glycine-M 2ϩ (except the glycine-Be 2ϩ ) among each corresponding isomers when these divalent metal ions are bound, are studied at the hybrid three-parameter B3LYP level with three different basis sets. Proton transfers from the hydroxyl to the amino nitrogen of the glycine without energy barriers have been first observed in the gas phase in these glycine-M 2ϩ systems. The interaction between the glycine and these DAEM ions except beryllium and magnesium ion only create an amino hydrogen pointing to the original hydroxyl due to their weaker interaction relative to those divalent transition metal (DTM) ion-bound glycine derivatives, being obviously different from that between the glycine and DTM ions, in which two amino hydrogens point to the original hydroxyl oxygen when these metal-chelated glycine derivatives are produced. The interaction energy between the glycine and divalent magnesium would be the boundary of one or two amino hydrogens pointing to the hydrogyl oxygen, i.e., the Ϫ170.3 kcal/mol of binding energy is a critical point. Similar intramolecular proton transfer has also been predicted for those DTM ion-chelated glycine systems; however, that in the gas state has not been observed in the monovalent metal ion-coordinated glycine systems. The binding energy between some monovalent TM ion and the glycine is similar to that of the glycineBa 2ϩ , which has the lowest binding strength among these DAEM-ion chelated glycine complexes. The difference among them only lies in the larger electrostatic and polarized effects in the latter, which favor the stability of the zwitterionic glycine form in the gas phase. According to these observations, we predict that the zwitterionic glycine would exist in the field of two positive charges in the gas phase.