Chickpea starch was subjected to triple retrogradation cycle with time intervals of 24, 48 and 72 h. The impact on in vitro digestibility, functional, pasting and structural characteristics was investigated. Compared to native chickpea starch, the resistant starch (RS) content of triple retrograded starch was significantly increased with increased retrogradation time whereas slowly digestible starch content was decreased. Water binding capacity and solubility of triple retrograded starch were significantly increased whereas swelling power and pasting properties were decreased. Triple retrograded starches showed B type and B ? V type crystalline structure. After triple retrogradation, the organised granular structure was disrupted, irregularly shaped particles were formed showing porous, coarse, filamentous network structure. FT-IR spectra perceived a slight change in percentage intensity of C-H stretch of triple retrograded starches (TRSs). Triple retrogradation was observed to be a promising methods for RS product.