Entry of herpes simplex virus (HSV) 1 into cells requires the interaction of HSV gD with herpesvirus entry mediator or nectin1receptors, and fusion with cell membrane mediated by the fusion glycoproteins gB, gH, and gL. We report that the gD ectodomain in soluble form (amino acids 1-305) was sufficient to rescue the infectivity of a gD-null HSV mutant, indicating that gD does not need to be anchored to the virion envelope to mediate entry. Entry mediated by soluble gD required, in addition to the receptorbinding sites contained within residues 1-250, a discrete downstream portion (amino acids 261-305), located proximal to the transmembrane segment in full-length gD. We named it as profusion domain. The pro-fusion domain was required for entry mediated by virion-bound gD, because its substitution with the corresponding region of CD8 failed to complement the infectivity of gD ؊/؉ HSV. Furthermore, a receptor-negative gD (gD⌬6-259) inhibited virus infectivity when coexpressed with wild-type gD; i.e., it acted as a dominant-negative gD mutant. The pro-fusion domain is proline-rich, which is characteristic of regions involved in protein-protein interactions. P291L-P292A substitutions diminished the gD capacity to complement gD ؊/؉ HSV infectivity. We propose that gD forms a tripartite complex with its receptor and, by way of the proline-rich pro-fusion domain, with the fusion glycoproteins, or with one of them. The tripartite complex would serve to recruit͞activate the fusion glycoproteins and bring them from a fusion-inactive to a fusion-active state, such that they execute fusion of the virion envelope with cell membrane. H erpes simplex virus (HSV) enters cells through the coordinated action of four essential glycoproteins; gD, gB, gH, and gL, that act after the binding of gC and gB to the glycosaminoglycans of cell-surface proteoglycans (1, 2). Of the four glycoproteins required for entry, gD is the receptor-binding glycoprotein. It interacts with two alternative protein receptors, HVEM (herpesvirus entry mediator) and nectin1, that belong to the tumor necrosis factor receptor family (3), and to a growing family of intercellular adhesion molecules with Ig structure, respectively (4-8). The four essential glycoproteins required for HSV entry are required and are also sufficient to induce fusion of cells that express a gD receptor (9). The gD-binding site on HVEM maps mainly to the N-terminal cysteine-rich domain 1, with a hot spot at Y23 (10, 11). For nectin1, the N-terminal V domain, in particular its CCЈCЉ ridge (amino acids 64-104) is sufficient to mediate HSV entry (12-15). Critical residues were located in the 69-75 region and at positions 77 and 85 (16, 17). Insertion and deletion mutants in gD were the first mutants used to define functional regions (18). Subsequently, the x-ray crystal structure of the first 259 residues of gD [of the 315 that compose the ectodomain] was solved (19). The gD ectodomain is composed of an Ig-folded core (residues 56-184), with N-and C-terminal extensions. The latter folds bac...