The dramatic transformation of the Zika virus (ZIKV) from a relatively unknown virus to a pathogen generating global-wide panic has exposed the dearth of detailed knowledge about this virus. Decades of research in the related Dengue virus (DENV), finally culminating in a vaccine registered for use in endemic regions (CYD-TDV) in three countries, provides key insights in developing strategies for tackling ZIKV, which has caused global panic to microcephaly and Guillain-Barre Syndrome. Dengue virus (DENV), a member of the family , the causal agent of the self-limiting Dengue fever and the Flaviviridae potentially fatal hemorrhagic fever/dengue shock syndrome, has been a scourge in tropical countries for many centuries. The recently solved structure of mature ZIKV (PDB ID:5IRE) has provided key insights into the structure of the envelope (E) and membrane (M) proteins, the primary target of neutralizing antibodies. The previously established MEPP methodology compares two conformations of the same protein and identifies residues with significant spatial and electrostatic perturbations. In the current work, MEPP analyzed the pre-and post-fusion DENV type 2 envelope (E) protein, and identified several known epitopes (His317, Tyr299, Glu26, Arg188, etc.) (MEPPitope). These residues are overwhelmingly conserved in ZIKV and all DENV serotypes, and also enumerates residue pairs that undergo significant polarity reversal. Characterization of α-helices in E-proteins show that α1 is not conserved in the sequence space of ZIKV and DENV. Furthermore, perturbation of α1 in the post-fusion DENV structure includes a known epitope Asp215, a residue absent in the pre-fusion α1. A cationic β-sheet in the GAG-binding domain that is stereochemically equivalent in ZIKV and all DENV serotypes is also highlighted due to a residue pair (Arg286-Arg288) that has a significant electrostatic polarity reversal upon fusion. Finally, two highly conserved residues (Thr32 and Thr40), with little emphasis in existing literature, are found to have significant electrostatic perturbation. Thus, a combination of different computational methods enable the rapid and rational detection of critical residues as epitopes in the search for an elusive therapy or vaccine that neutralizes multiple members of the family. These secondary Flaviviridae structures are conserved in the related Dengue virus (DENV), and possibly rationalize isolation techniques particle adsorption on magnetic beads coated No competing interests were disclosed.
Competing interests:The author(s) declared that no grants were involved in supporting this work.
Amendments from Version 1The revised manuscript incorporates minor suggestions from the reviewers: a) Title has been changed b) Helices 5 and 6 now labelled in Figure 1. c) References to recent work on antibodies cited (79 and 88).