2020
DOI: 10.26434/chemrxiv.11886702
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Structure-Based Virtual Screening of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) as Endocrine Disruptors of Androgen Receptor Activity Using Molecular Docking and Machine Learning

Abstract: Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 54 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?