“…Table 2 summarises details of the 11 studies included[31-41]. The studies demonstrated the ability of CNN models in analysed images of liver cancers as follows: Classification of liver masses into five categories: category A: Classic HCC; category B: Malignant liver tumour other than HCC; category C: intermediate masses (early HCC, dysplastic nodules, or benign liver masses; category D: Haemangiomas; category E: Cysts[31], detection of small metastasis in the liver[32], discrimination between primary liver cancer (HCC) and secondaries in the liver[33], differentiation between chronic liver diseases such as cirrhosis and the presence of HCC on top of cirrhosis[34], classification of grade of HCC nuclei and segmentation of HCC nuclei on pathology images[35,36], classification of liver lesions[31,33,34,37,41], and detection of liver tumour or liver masses and identification of their types and phases[38-40]. While these studies examined liver CT images[31,32,37-40], ultrasound images[34], and 3D multi-parameter MRI scan images[33,41], other images such as cellular and histopathological images were also included[35,36].…”