Human apolipoprotein E (apoE) is a 299-amino acid secreted glycoprotein binding cholesterol and phospholipids, and with three common isoforms (APOE ε2, APOE ε3, and APOE ε4). The exact mechanism by which APOE gene variants increase/decrease Alzheimer's disease (AD) risk is not fully understood, but APOE isoforms differently affect brain homeostasis and neuroinflammation, blood-brain barrier (BBB) permeability, glial function, synaptogenesis, oral/gut microbiota, neural networks, amyloid beta (Aβ) deposition, and tau-mediated neurodegeneration. In this perspective, we propose a comprehensive interpretation of APOE-mediated effects within AD pathophysiology, describing some specific cellular, biochemical, and epigenetic mechanisms and updating the different APOE-targeting approaches being developed as potential AD therapies. Intracisternal adeno-associated viral-mediated delivery of APOE ε2 is being tested in AD APOE ε4/ε4 carriers, while APOE mimetics are being used in subjects with perioperative neurocognitive disorders. Other approaches including APOE