The relationship between structure, interfacial electrostatics, bonding, and dynamics of organic molecules on metals is studied using a self-assembled monolayer of methylthiolate, CH3S, on Cu(111). The flat adsorption energy landscape of CH(3)S/Cu(111) results from metal-to-molecule charge redistribution which allows for a high mobility of CH3S. This contributes a nonuniform diffuse background to Bragg scattering, which needs to be considered in diffraction analyses. Ramifications on the interpretation of experimental data and the potential impact on the design of metal-organic interfaces are discussed.