Summary: The phase development mechanism during drawing from a highly entangled melt of ultra‐high‐molecular‐weight polyethylene is analyzed by simultaneous measurements of in situ X‐ray diffraction using synchrotron radiation and stress/strain behavior. The stress/strain curve exhibits a plateau region at the initial stage of the draw, and no crystalline reflections appear on a series of in situ X‐ray diffraction patterns. However, as the sample draw proceeds above a critical strain, a metastable hexagonal reflection appears and becomes predominant, where the stress/strain curve still shows a plateau deformation. With a further increase of the strain, the intensity of the hexagonal reflection peak begins to decrease and subsequently that of the usual orthorhombic ones increase. Correspondingly, a rapid increase of draw stress, because of the strain‐hardening behavior, is recorded.