BackgroundManagement of diabetes without any side effects is still a challenge to the medical system. This leads to increasing demand for natural products with antidiabetic activity with fewer side effects. Grewia hirsuta (Tiliaceae) is a traditional herbal medicinal plant and is reported to possess a variety of pharmacological actions. In the present research, a compound (4Z, 12Z)-cyclopentadeca-4, 12-dienone isolated from Grewia hirsuta was taken as ligand for molecular docking studies. Evaluation of hypoglycemic activity through an extensive in silico docking approach with molecular targets such as aldose reductase, glucokinase, pyruvate dehydrogenase kinase isoform 2, peroxisome proliferator-activated receptor-gamma, glycogen synthase kinase-3, 11β-Hydroxysteroid dehydrogenase, and glutamine: fructose-6-phosphate amidotransferase were performed.MethodsIsolation of the (4Z, 12Z)-cyclopentadeca-4,12-dienone from the methanol extract of the leaves of Grewia hirsuta was performed by the column chromatography to yield different fractions. These fractions were then subjected to purification and the structure was elucidated and confirmed by spectroscopic methods including UV, FTIR, 1H, 13C NMR and the accurate mass determination was carried out using the Q-TOF mass spectrometer. In-vivo experimentation was performed with evaluation of α-glucosidase, α-amylase and MTT assay that had been reported by the author in the earlier paper. Molecular docking study was performed with GLIDE docking software.ResultsThe docking studies of the ligand (4Z, 12Z)-cyclopentadeca-4, 12-dienone with seven different target proteins showed that this is a good inhibitor, which docks well with various targets related to diabetes mellitus. Hence (4Z, 12Z)-cyclopentadeca-4,12-dienone can be considered for developing into a potent anti-diabetic drug.ConclusionThe results of the current study have revealed that the leaves of the selected plant Grewia hirsuta contains a potential inhibitor for diabetes (4Z, 12Z)-cyclopentadeca-4,12-dienone. Thus enabling a possibility of this plant extract as a new alternative to existing diabetic approaches.