BackgroundWe demonstrated therapeutic nonequivalence of “bioequivalent” generics for meropenem, but there is no data with generics of other carbapenems.MethodsOne generic product of imipenem-cilastatin was compared with the innovator in terms of in vitro susceptibility testing, pharmaceutical equivalence, pharmacokinetic (PK) and pharmacodynamic (PD) equivalence in the neutropenic mouse thigh, lung and brain infection models. Both pharmaceutical forms were then subjected to analytical chemistry assays (LC/MS).Results and conclusionThe generic product had 30% lower concentration of cilastatin compared with the innovator of imipenem-cilastatin. Regarding the active pharmaceutical ingredient (imipenem), we found no differences in MIC, MBC, concentration or potency or AUC, confirming equivalence in terms of in vitro activity. However, the generic failed therapeutic equivalence in all three animal models. Its Emax against S. aureus in the thigh model was consistently lower, killing from 0.1 to 7.3 million less microorganisms per gram in 24 hours than the innovator (P = 0.003). Against K. pneumoniae in the lung model, the generic exhibited a conspicuous Eagle effect fitting a Gaussian equation instead of the expected sigmoid curve of the Hill model. In the brain infection model with P. aeruginosa, the generic failed when bacterial growth was >4 log10 CFU/g in 24 hours, but not if it was less than 2.5 log10 CFU/g. These large differences in the PD profile cannot be explained by the lower concentration of cilastatin, and rather suggested a failure attributable to the imipenem constituent of the generic product. Analytical chemistry assays confirmed that, besides having 30% less cilastatin, the generic imipenem was more acidic, less stable, and exhibited four different degradation masses that were absent in the innovator.