We report on the optical and structural characterization of the two-component vacuum deposited (VD) rubrene (Rub)-Alq3 films. As is known, Rub-doped OLED active materials demonstrate both promising electroluminescence and transistor characteristics. However, in terms of operational lifetime, the Rub practical application in basic devices has a few drawbacks related to its chemical instability. Our main attention was focused on the role of the Alq3 coverage and the isomeric transformation of a Rub molecule on its chemical stability in these structures. By monitoring the evolution of PL emission in time, we found that the Rub degradation in Rub-Alq3 films is slower than that in vacuum-deposited Rub layers. These results demonstrate that the deposition of an Alq3 layer can be a way to enhance the stability of Rub to the photo-oxidation in optoelectronic devices. The Rub amorphous film crystallization at elevated temperatures in open air was observed for the first time.K e y w o r d s: rubrene, Alq3, oxidized rubrene, vacuum deposition, thin films, FTIR spectra, photoluminescence.