Performing photosynthesis in the desert is a challenging task since it requires a fast adaptation to extreme illumination and temperature changes. To understand adaptive mechanisms, we purified Photosystem II (PSII) from Chlorella ohadii, a green alga from the desert soil surface, and identified structural elements that might enable the photosystem functioning under harsh conditions. The 2.72A cryogenic electron-microscopy (cryoEM) structure of PSII exhibited 64 subunits, encompassing 386 chlorophylls, 86 carotenoids, four plastoquinones, and several structural lipids. At the luminal side of PSII, the oxygen evolving complex was protected by a unique subunit arrangement - PsbO (OEE1), PsbP (OEE2), CP47, and PsbU (plant OEE3 homolog). PsbU interacted with PsbO, CP43, and PsbP, thus stabilising the oxygen evolving shield. Substantial changes were observed on the stromal electron acceptor side - PsbY was identified as a transmembrane helix situated alongside PsbF and PsbE enclosing cytochrome b559, supported by the adjacent C-terminal helix of Psb10. These four transmembrane helices bundled jointly, shielding cytochrome b559 from the solvent. The bulk of Psb10 formed a cap protecting the quinone site and probably contributed to the PSII stacking. So far, the C. ohadii PSII structure is the most complete description of the complex, suggesting numerous future experiments. A protective mechanism that prevented QB from rendering itself fully reduced is proposed.