Asgard archaea were pivotal in the origin of complex cellular life. Hodarchaeales (Asgardarchaeota class Heimdallarchaeia) were recently shown to be the closest relatives of eukaryotes. However, limited sampling of these archaea constrains our understanding of their ecology and evolution1–3, including their anticipated role in eukaryogenesis. Here, we nearly double the number of Asgardarchaeota metagenome-assembled genomes (MAGs) to 869, including 136 new Heimdallarchaeia (49 Hodarchaeales) and several novel lineages. Examining global distribution revealed Hodarcheales are primarily found in coastal marine sediments. Detailed analysis of their metabolic capabilities revealed guilds of Heimdallarchaeia are distinct from other Asgardarchaeota. These archaea encode hallmarks of aerobic eukaryotes, including electron transport chain complexes (III and IV), biosynthesis of heme, and response to reactive oxygen species (ROS). The predicted structural architecture of Heimdallarchaeia membrane-bound hydrogenases includes additional Complex-I-like subunits potentially increasing the proton motive force and ATP synthesis. Heimdallarchaeia genomes encode CoxD, which regulates the electron transport chain (ETC) in eukaryotes. Thus, key hallmarks for aerobic respiration may have been present in the Asgard-eukaryotic ancestor. Moreover, we found that Heimdallarchaeia is present in a variety of oxic marine environments. This expanded diversity reveals these Archaea likely conferred energetic advantages during early stages of eukaryogenesis, fueling cellular complexity.