Fully stabilized nanometric zirconia samples with varying degrees of porosity and grain sizes were analyzed using the coincidence Doppler broadening mode of the positron annihilation spectroscopy (PAS). A decrease in the low-momentum fraction was observed and coincided with a decrease in porosity. In addition to pores, it is proposed that defects in the negatively charged grain-boundary space region act as positron trapping centers; their effectiveness decreases with an increase in grain size. It is shown that PAS is sensitive to small grain-size differences within the nanometric regime in these oxide materials.