Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C.PKC isozymes comprise a family of multidomain proteins that are under exquisite conformational control. Two major mechanisms control the conformation of PKC family members: phosphorylation and second messenger-dependent membrane binding (1, 2). First, newly synthesized enzymes undergo a series of ordered phosphorylations that lock the enzyme into a stable, catalytically competent, and autoinhibited species (3, 4). This species is maintained in an autoinhibited conformation by a pseudosubstrate segment that blocks the substrate-binding cavity, a conformation that also protects the priming sites of PKC from dephosphorylation. The inactive species are localized throughout the cell, often tethered to scaffold proteins (5). This processing by phosphorylation is constitutive and required to protect PKC from degradation; unphosphorylated protein is rapidly degraded (1). Second, binding to lipid second messengers allosterically controls the enzyme by facilitating the release of the autoinhibitory pseudosubstrate segment from the substrate-binding cavity (6). Thus, this conformational transition is acutely controlled by activation of receptors that signal using diacylglycerol as the second messenger. The membranebound conformation has an increased sensitivity to phosphatases by 2 orders of magnitude (7), and prolonged activation, as occurs with phorbol esters (functional analogues of diacylglycerol), results in the dephosphorylation and subsequent degradation of PKC (8). Thus, phosphorylation converts newly synthesized PKC into a stable, degradation-resistan...