We study measures on random partitions, arising from condensing stochastic particle systems with stationary product distributions. We provide fairly general conditions on the stationary weights, which lead to Poisson-Dirichlet statistics of the condensed phase in the thermodynamic limit. The Poisson-Dirichlet distribution is known to be the unique reversible measure of split-merge dynamics for random partitions, which we use to characterize the limit law. We also establish concentration results for the macroscopic phase, using size-biased sampling techniques and the equivalence of ensembles to characterize the bulk distribution of the system.