Die oxygene Photosynthese bildet den Grundpfeiler des heutigen Ökosystems unseres Planeten. Neben den gut untersuchten Landpflanzen bilden Mikroalgen eine äußerst bedeutende Organismengruppe der phototrophen Lebewesen. Zu den Mikroalgen zählen die Diatomeen, welche sich beispielsweise durch eine Silikatschale und spezielle Lichtsammelkomplexe auszeichnen und für einen Großteil der marinen Primärproduktion verantwortlich sind. Die stoffwechselphysiologischen Grundlagen des ökologischen Erfolgs der Kieselalgen sind bislang noch unzureichend erforscht. Ein Vertreter der zentrischen Diatomeen, Cyclotella, wurde bereits zur Jahrtausendwende zur biochemischen Charakterisierung der Diatomeen Photosynthese verwendet (Eppard und Rhiel, 1998; Eppard und Rhiel, 2000), das Genom des Organismus aber erst vor kurzem sequenziert (Traller et al., 2016). Die Sequenzierung des Genoms konnte einige Gene für Lichtsammelproteine identifizieren, die Homologie zu den LhcSR-Proteinen aus C. reinhardtii aufweisen, welche nachweislich eine photoprotektive Funktion besitzen (Peers et al., 2009). Diese sogenannten Lhcx-Proteine der Diatomeen sind in den zwei Gruppen der Kieselalgen, den zentrischen und pennaten Diatomeen zu finden, unterscheiden sich aber in ihren jeweiligen Lhcx-Kandidaten. So können in der pennaten Diatomee P. tricornutum vier lhcx-Gene ausgemacht werden, während die zentrische Kieselalge T. pseudonana sechs lhcx-Gene besitzt und C. cryptica vier verschiedene lhcx-Kandidaten genomisch aufweist (Armbrust et al., 2004; Bowler et al., 2008; Traller et al., 2016). Die beschriebenen Diatomeen weisen alle eine Homologie im Lhcx1 auf, während sich die übrigen Lhcx-Kandidaten zwischen pennaten und zentrischen Diatomeen unterscheiden. Ein zwischen T. pseudonana und C. cryptica konserviertes Lhcx ist das Lhcx6_1, welches 2011 das erste Mal massenspektrometrisch an Photosystemen von T. pseudonana nachgewiesen wurde (Grouneva et al., 2011) und in weiteren Massenspektrometrie-gestützten Untersuchungen in beiden zentrischen Diatomeen an Photosynthese-Komplexen gefunden werden konnte (Gundermann et al., 2019; Calvaruso et al., 2020). Die Funktion des Lhcx6_1 ist bislang unklar. Diese Arbeit konnte das Lhcx6_1 aus C. meneghiniana charakterisieren und Antikörper-gestützt genauer lokalisieren, eine nicht dynamische Phosphorylierung der Thylakoidmembran-Proteine der zentrischen Diatomee nachweisen und die molekularbiologische Zugänglichkeit des Organismus optimieren. qRT-PCR gestützte Expressions-Analysen konnten eine unerwartete Expression des lhcx6_1-Gens aufdecken. Dieses weist, im Vergleich zum Lhcx1, keine Starklicht induzierte Expression auf. Die Expression des Gens konnte nach wenigen Stunden Schwachlicht als maximal bestimmt werden, während sie im Starklicht abnimmt. Das Muster der Genexpression glich im Schwachlicht eher der des lhcf1-Gens. Die Sequenzierung des lhcx6_1 aus C. meneghiniana identifizierte eine verlängerte N-terminale Sequenz des Proteins, welche Homologie zu den minoren Antennen aus A. thaliana besitzt und Teil des reifen Proteins ist. Mittels eines C-terminalen Epitops wurde ein Antikörper gegen das Lhcx6_1 entworfen, welcher das Protein in C. meneghiniana spezifisch nachweisen kann. Die Isolation von Thylakoidmembranen der zentrischen Diatomee und weitergehende Aufreinigung mittels Saccharosedichtegradienten und lpBN-PAGE konnten die Lokalisation des Lhcx6_1 eingrenzen. Das Protein zeigt dabei keine Unterschiede in seiner Lokalisation nach Inkubation in Schwach-, Stark- und Fernrot-Licht und ist vorrangig mit Photosystem I assoziiert. In geringerer Menge konnte es zudem an Photosystem II nachgewiesen werden, während der immunologische Nachweis in Lichtsammelkomplexen (FCPs) minimale Mengen erbrachte. Ferner konnte eine Phosphorylierung des Lhcx6_1 an Threonin-Resten nachgewiesen werden, während die meisten anderen Thylakoidmembran-Proteine mittels Phospho-Serin Antikörper detektiert werden konnten. Weder die Phosphorylierung des Lhcx6_1, noch der anderen Thylakoidmembran-Proteine, zeigt eine dynamische Regulation, im Stile einer state-transition ähnlichen Kinase auf. Die Qualität des Umgebungslichts führte zu keinerlei Unterschieden in Phosphorylierungsmustern. Weiterführende Untersuchungen der Lhcx6_1-Phosphorylierung mittels Phos-tag PAGE identifizieren eine unphosphorylierte und eine einfach phosphorylierte Form des Proteins. Dabei kann an PSI ausschließlich die phosphorylierte Version des Lhcx6_1 gefunden werden. Im Zuge der Arbeit konnte zudem erstmalig die Elektroporation und Konjugation für C. meneghiniana als Transformations-Methoden etabliert werden, während das Protokoll für die biolistische Transformation optimiert wurde. Die Elektroporation erbrachte die höchste Transformationseffizienz. Molekularbiologische Unterfangen eines Lhcx6_1-Knockdowns mittels Antisense-RNA erzielten zunächst, aufgrund der starken Gegenregulation der Diatomee, keinen Erfolg...