Marado is a small rocky island located off the south coast of Jeju Island and acts as the first gateway of the Kuroshio Current to Korean coastal ecosystems. This island is one of the most unpolluted and well preserved sea areas around the Jeju coast. We extensively observed macroalgal assemblages of species and functional forms in the intertidal and subtidal zones through four seasons on Marado, Jeju Island, Korea to demonstrate the seasonality of vertical distribution patterns and biomass. A total of 144 species (14 Chlorophyta, 40 Phaeophyta, and 90 Rhodophyta) were identified in quadrats and were analyzed seasonally and vertically to define the variation patterns. The annual mean biomass of macroalgae was 2,932.3 g wet wt m -2 and the highest value was recorded in spring and the lowest was in winter. The annual dominant species by biomass was Ecklonia cava followed by Sargassum fusiforme, S. macrocarpum, Amphiroa galapagensis, Chondria crassicaulis, and S. thunbergii. Obvious biomass zonation patterns of macroalgal species were detected in relation to tidal height and depth. Macroalgal biomass, diversity index (H'), and community dynamics were the highest in the shallow subtidal zone. Species number was higher in the subtidal than in the intertidal zone and similar throughout the entire subtidal zone. Our results provide revealing insights into the distribution patterns of macroalgal assemblages in an unpolluted sea area around Jeju Island.Key Words: biomass; distribution; Jeju Island; macroalgae; Marado; seasonal variation
INTRODUCTIONMacroalgal ecologists strive to understand the environmental factors and phenomena that affect macroalgal zonation patterns (Choi and Kim 2004, Balata and Piazzi 2008, Konar et al. 2009, Kang et al. 2011. Macroalgal zonation patterns commonly undergo changes in abundance, diversity, and community dynamics through natural processes along tidal height and depth gradients. The highest level of these patterns is generally found at mean low water (MLW) and decreases with both increasing depth and intertidal height (Garrabou et al. 2002, Choi and Kim 2004, Kang and Kim 2004, Balata et al. 2006, Konar et al. 2009. Although numerous studies have described these general zonation patterns, recent studies have suggested that these patterns may not be generalizable across geographic regions because peaks in abundance or diversity are not found consistently in particular depth strata (Balata and Piazzi 2008, Konar et al. 2009, Heo et al. 2011, Kang et al. 2011. Therefore, there is great interest in investigating not only these exceptional patterns but also different zonation patterns in species composition, diversity, abundance, and community dynamics among areas at local scales (Konar et al. 2009, Heo et al. 2011, Kang et al. 2011, Shin et al. 2011.Macroalgal growth is influenced by multi-factorial in- This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrest...