Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Structure-based mutational analysis of serine protease specificity has produced a large database of information useful in addressing biological function and in establishing a basis for targeted design efforts. Critical issues examined include the function of water molecules in providing strength and specificity of binding, the extent to which binding subsites are interdependent, and the roles of polypeptide chain flexibility and distal structural elements in contributing to specificity profiles. The studies also provide a foundation for exploring why specificity modification can be either straightforward or complex, depending on the particular system.
Structure-based mutational analysis of serine protease specificity has produced a large database of information useful in addressing biological function and in establishing a basis for targeted design efforts. Critical issues examined include the function of water molecules in providing strength and specificity of binding, the extent to which binding subsites are interdependent, and the roles of polypeptide chain flexibility and distal structural elements in contributing to specificity profiles. The studies also provide a foundation for exploring why specificity modification can be either straightforward or complex, depending on the particular system.
The human plasma serine protease, activated protein C (APC), primarily exerts its anticoagulant function by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. A recombinant active site Ser 360 to Ala mutation of protein C was prepared, and the mutant protein was expressed in human 293 kidney cells and purified. The activation peptide of the mutant protein C zymogen was cleaved by a snake venom activator, Protac C, but the "activated" S360A APC did not have amidolytic activity. However, it did exhibit significant anticoagulant activity both in clotting assays and in a purified protein assay system that measured prothrombinase activity. The S360A APC was compared to plasma-derived and wild-type recombinant APC. The anticoagulant activity of the mutant, but not native APC, was resistant to diisopropyl fluorophosphate, whereas all APCs were inhibited by monoclonal antibodies against APC. In contrast to native APC, S360A APC was not inactivated by serine protease inhibitors in plasma and did not bind to the highly reactive mutant protease inhibitor M358R alpha 1 antitrypsin. Since plasma serpins provide the major mechanism for inactivating APC in vivo, this suggests that S360A APC would have a long half-life in vivo, with potential therapeutic advantages. S360A APC rapidly inhibited factor Va in a nonenzymatic manner since it apparently did not proteolyze factor Va. These data suggest that native APC may exhibit rapid nonenzymatic anticoagulant activity followed by enzymatic irreversible proteolysis of factor Va. The results of clotting assays and prothrombinase assays showed that S360A APC could not inhibit the variant Gln 506-FVa compared with normal Arg 506-FVa, suggesting that the active site of S360A APC binds to FVa at or near Arg 506.
The heterotetrameric enzyme hydroxynitrile lyase (HNL) from sorghum (EC 4.1.2.11) is involved in the catabolism of the cyanogenic glycoside dhurrin. We have isolated a cDNA clone comprising about 90% of the COOH terminal sequence of a precursor which encodes both subunit of HNL from Sorghum bicolor L. (SbHNL). Hence the subunits of SbHNL must be the result of post-translational processing. The deduced amino acid sequence of HNL shares significant sequence homology with members of the serine carboxypeptidase family. In particular, HNL from sorghum shares the catalytical triad Asp. His, and Ser with these enzymes which evolved in 3 groups of enzymes (carboxypeptidase, chymotrypsin, and subtilisin) by convergent evolution. Moreover, like serine carboxypeptidases, HNL from sorghum consists of two pairs of glycosylated cysteine linked A and B chains forming a heterotetramer of a molecular weight of 105,000 (carboxypeptidases 120,000). Thus, HNL from sorghum closely resembles to serine carboxypeptidases but differs from all other HNLs described so far. Western blotting experiments revealed cross reaction between carboxypeptidase from wheat and anti SbHNL antisera. Therefore, convergent evolution of HNLs from various ancestoral enzymes is conceivable. Hybridization of SbHNL cDNA to northern blots of total RNAs isolated from various organs of young sorghum seedlings shows the same expression pattern of HNL as found by means of western blotting or enzyme assays. Using PCR and Southern blot analysis, we demonstrated that the gene of SbHNL is free of introns. Further sequence analysis of cDNA clones and genomic DNA revealed a stretch of 23 adenine residues in the 3'-untranslated part of the gene. Both, intronless organisation of the gene and a genomic stretch of oligo A suggests that SbHNL may have evolved by a reverse transcription event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.