| Ferroelectric materials, because of their robust spontaneous electrical polarization, are widely used in various applications. Recent advances in modelling, synthesis and characterization techniques are spurring unprecedented advances in the study of these materials. In this Review, we focus on thin-film ferroelectric materials and, in particular, on the possibility of controlling their properties through the application of strain engineering in conventional and unconventional ways. We explore how the study of ferroelectric materials has expanded our understanding of fundamental effects, enabled the discovery of novel phases and physics, and allowed unprecedented control of materials properties. We discuss several exciting possibilities for the development of new devices, including those in electronic, thermal and photovoltaic applications, and transduction sensors and actuators. We conclude with a brief survey of the different directions that the field may expand to over the coming years. REVIEWS NATURE REVIEWS | MATERIALS VOLUME 2 | ARTICLE NUMBER 16087 | 1 © 2 0 1 7 M a c m i l l a n P u b l i s h e r s L i m i t e d , p a r t o f S p r i n g e r N a t u r e . A l l r i g h t s r e s e r v e d .