1986
DOI: 10.1021/jm00156a006
|View full text |Cite
|
Sign up to set email alerts
|

Structure-taste correlation of L-aspartyl dipeptides using the SIMCA method

Abstract: One of the pattern recognition techniques, the SIMCA method, has been applied to structure-taste studies on L-aspartyl dipeptides (L-Asp-NH-R). The sweet and bitter taste class models of the peptides were obtained by using five structural descriptors, such as molar refractivity, and four kinds of STERIMOL parameters. The classification rates were calculated to be 87% and 81% for sweet and bitter peptides, respectively. The SIMCA method has also suggested that two factors, shape and size, of the C-terminal amin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
4

Year Published

1988
1988
2017
2017

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 34 publications
(10 citation statements)
references
References 2 publications
0
6
0
4
Order By: Relevance
“…The models presented in Table 1 from the existing literature were mainly calibrated by using small datasets and homogeneous sets of molecules, thus hampering the model generalization ability toward different types of chemicals (i.e., limited applicability domain). In addition, the majority of the studies did not perform validation of the QSTR models (Iwamura, 1980; Takahashi et al, 1982; Spillane et al, 1983; Miyashita et al, 1986b; Spillane and Sheahan, 1989, 1991). Thus, our QSTR-based expert system can be considered as a more general model for accurate prediction of sweetness of both un-evaluated and un-synthesized potential sweeteners exhibiting diverse scaffolds (i.e., a more general applicability domain).…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…The models presented in Table 1 from the existing literature were mainly calibrated by using small datasets and homogeneous sets of molecules, thus hampering the model generalization ability toward different types of chemicals (i.e., limited applicability domain). In addition, the majority of the studies did not perform validation of the QSTR models (Iwamura, 1980; Takahashi et al, 1982; Spillane et al, 1983; Miyashita et al, 1986b; Spillane and Sheahan, 1989, 1991). Thus, our QSTR-based expert system can be considered as a more general model for accurate prediction of sweetness of both un-evaluated and un-synthesized potential sweeteners exhibiting diverse scaffolds (i.e., a more general applicability domain).…”
Section: Resultsmentioning
confidence: 99%
“…QSTR studies regarding the prediction of the sweetness receptor-mediated taste were conducted by considering only homogeneous families of sweeteners (Iwamura, 1980; Kier, 1980; Spillane and McGlinchey, 1981; Takahashi et al, 1982, 1984; Spillane et al, 1983, 1993, 2000, 2002, 2003, 2006, 2009; Miyashita et al, 1986a,b; van der Wel et al, 1987; Okuyama et al, 1988; Spillane and Sheahan, 1989, 1991; Drew et al, 1998; Kelly et al, 2005), limiting their ability to predict the sweetness of other kinds of sweeteners. In order to generalize the predictiveness of the QSTR-based expert system, we used a dataset that covered a large chemical space of both sweet and non-sweet molecules.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…La calidad en ajuste del modelo de Takahashi et al es comparable al obtenido en este estudio; sin embargo, la base de datos usada para su calibración está constituida únicamente por 22 compuestos, lo que lógicamente limita la realización de validación externa. En efecto, la mayoría de modelos no presentan validación externa (Iwamura, 1980;Takahashi et al, 1982;Spillane et al, 1983;Miyashita et al, 1986b;Drew et al, 1998;Spillane et al, 2002), por lo que comparar el rendimiento predictivo con respecto al modelo desarrollado no es factible.…”
Section: Resultados Y Discusiónunclassified
“…Ese mismo año, Kier (Kier, 1980) usó 20 derivados dulces y amargos de aldoximas para desarrollar una función discriminante lineal basada en dos índices de conectividad molecular. Entre 1982y 1986, Takahashi et al (Takahashi et al, 1982Takahashi et al, 1984;Miyashita et al, 1986b) trabajaron con compuestos dulces y amargos derivados de la perillartina y del dipéptido L-aspartil para desarrollar modelos QSAR basados en máquina de aprendizaje lineal (LLA), kNN, LDA y modelado suave independiente por analogía de clases (SIMCA). Adicionalmente, Spillane et al (Spillane et al, 1983;Drew et al, 1998;Spillane et al, 2002) trabajaron en la discriminación de derivados del sulfamato mediante el uso de modelos discriminantes: gráfico, DA, LDA y QDA.…”
Section: Introductionunclassified