Structured in Space, Randomized in Time: Leveraging Dropout in RNNs for Efficient Training
Anup Sarma,
Sonali Singh,
Huaipan Jiang
et al.
Abstract:Recurrent Neural Networks (RNNs), more specifically their Long Short-Term Memory (LSTM) variants, have been widely used as a deep learning tool for tackling sequence-based learning tasks in text and speech. Training of such LSTM applications is computationally intensive due to the recurrent nature of hidden state computation that repeats for each time step. While sparsity in Deep Neural Nets has been widely seen as an opportunity for reducing computation time in both training and inference phases, the usage of… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.