We introduce a framework for online structure theory. Our approach
generalises notions arising independently in several areas of computability
theory and complexity theory. We suggest a unifying approach using operators
where we allow the input to be a countable object of an arbitrary complexity.
We give a new framework which (i) ties online algorithms with computable
analysis, (ii) shows how to use modifications of notions from computable
analysis, such as Weihrauch reducibility, to analyse finite but uniform
combinatorics, (iii) show how to finitize reverse mathematics to suggest a fine
structure of finite analogs of infinite combinatorial problems, and (iv) see
how similar ideas can be amalgamated from areas such as EX-learning, computable
analysis, distributed computing and the like. One of the key ideas is that
online algorithms can be viewed as a sub-area of computable analysis.
Conversely, we also get an enrichment of computable analysis from classical
online algorithms.