The stable and metastable, as measured using an all-electron density functional theory approach, stoichiometric clusters of boron, aluminium, gallium, indium and thallium oxide are reported. Initial candidate structures were found using an evolutionary algorithm to search the energy landscape, defined using classical interatomic potentials, for alumina and india followed by data mining or rescaling. Characterization of the refined structures was performed by electronic structure techniques at the hybrid density functional and many-body GW levels of theory. We make accurate predictions of the spectroscopic properties represented by mean ionization potentials of 11.4, 9.9, 9.8, 8.8 and 8.4 eV and electron affinities of 0.05, 1.1, 1.6, 1.9 and 2.5 eV for boria, alumina, gallia, india and thallia, respectively. The changes in the global minima, atomistic and electronic properties with respect to the cluster and cation size are discussed.