Nonribosomal peptide synthetases (NRPSs) produce many important and structurally complex natural products. Because of their architectures, reprogramming NRPSs has long been attempted to access new bioactive compounds. However, detailed characterization of NRPS catalysis and substrate selectivity by adenylation (A) domains is needed to support such efforts. We present a simple coupled NADH/pyrophosphate (PPi ) detection assay for analyzing A domain catalysis in vitro. PPi formation is coupled to the consumption of NADH by four enzymatic steps and is detected spectroscopically (λ=340 nm) for simple analysis. We demonstrate the effectiveness of this assay with several adenylation domains, including a stand-alone A domain (DltA, cell wall biosynthesis) and an embedded A domain (Tcp10, teicoplanin biosynthesis). Substrate acceptance of the Tcp10 A domain was explored for the first time, thus demonstrating the applicability of the assay for complex, multi-domain NRPSs.