Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen leveldependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/ functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition.receptor P silocybin is the prodrug of psilocin (4-hydroxy-dimethyltryptamine), the primary hallucinogenic component of magic mushrooms, and a classic psychedelic ("mind-manifesting") drug. Psilocybin has been used for centuries in healing ceremonies (1) and more recently in psychotherapy (2); it is capable of stimulating profound existential experiences (3), which can leave a lasting psychological impression (4). However, despite a wealth of literature on its phenomenology, we currently know very little about how its effects are produced in the brain. The present study sought to address this question using complementary functional MRI (fMRI) techniques and a protocol designed to image the transition from normal waking consciousness to the psychedelic state. Two groups of healthy subjects were scanned using arterial spin labeling (ASL) perfusion and blood-oxygen level-dependent (BOLD) fMRI during intravenous infusion of psilocybin. Infused over 60 s (2 mg in 10-mL saline), psilocybin's subjective effects begin within seconds (5), allowing the capture of the corresponding change in brain state.Results ASL Perfusion fMRI. Fifteen healthy, hallucinogen-experienced subjects (five females), mean age 34.1 (SD 8.2) were scanned with ASL. Subjects underwent an anatomical scan followed by two taskfree functional scans, each lasting 18 min. Subjects were instructed to relax and a fixation cross was displayed. Solutions were inf...