2017
DOI: 10.1088/1757-899x/166/1/012036
|View full text |Cite
|
Sign up to set email alerts
|

Student academic performance analysis using fuzzy C-means clustering

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 0 publications
0
1
0
1
Order By: Relevance
“…Berdasarkan hasil proses Clustering 4255 data akademik mahasiswa diperoleh 4 cluster. Cluster dengan kategori prestasi terbaik yaitu pada cluster 3 berjumlah 1753 mahasiswa, cluster 4 sebanyak 1496 mahasiswa, cluster 2 berjumlah 676 mahasiswa dan cluster 1 berjumlah 330 mahasiswa [10]. Sedangkan penelitian yang penulis lakukan membahas tingkat kepuasan mahasiswa menggunakan metode Fuzzy C-Means dan diperoleh 303 mahasiswa merasa puas dan 197 mahasiswa merasa tidak puas.…”
Section: Rosadi Et Al 2017unclassified
“…Berdasarkan hasil proses Clustering 4255 data akademik mahasiswa diperoleh 4 cluster. Cluster dengan kategori prestasi terbaik yaitu pada cluster 3 berjumlah 1753 mahasiswa, cluster 4 sebanyak 1496 mahasiswa, cluster 2 berjumlah 676 mahasiswa dan cluster 1 berjumlah 330 mahasiswa [10]. Sedangkan penelitian yang penulis lakukan membahas tingkat kepuasan mahasiswa menggunakan metode Fuzzy C-Means dan diperoleh 303 mahasiswa merasa puas dan 197 mahasiswa merasa tidak puas.…”
Section: Rosadi Et Al 2017unclassified
“…Wu et al (2017) used a combination of factor analysis and cluster analysis to evaluate students' performance and finally classified students into several clusters through cluster analysis based on factor scores for objective and comprehensive evaluation. Rosadi et al (2017) grouped data by fuzzy C-mean clustering algorithm when assessing students' academic performance and validated their application. Wang (2022) improved the K-means algorithm based on student information to address the problem of large course differences in the evaluation of student performance and proved that the improved pan of this paper has obvious advantages through data.…”
Section: Introductionmentioning
confidence: 99%