2019
DOI: 10.1007/978-3-030-20954-4_40
|View full text |Cite
|
Sign up to set email alerts
|

Student Concentration Evaluation Index in an E-learning Context Using Facial Emotion Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
10
0
4

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 26 publications
(14 citation statements)
references
References 17 publications
0
10
0
4
Order By: Relevance
“…An FER analysis has been carried out to monitor driver's mood during the whole experiment. As mentioned in the previous Section, in order to identify the concentration through a FER methodology, some works ( [22,26]) suggest to identify the neutral expression. Furthermore, the present work also considered the assumption that emotion detection can reveal driver's distraction with particular criticality in the presence of anger, sadness, and emotional agitation, as stated by Dingus et al [30] in their work about crash risk factors, and, on the contrary, the concentration can be associated with the neutral expression.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…An FER analysis has been carried out to monitor driver's mood during the whole experiment. As mentioned in the previous Section, in order to identify the concentration through a FER methodology, some works ( [22,26]) suggest to identify the neutral expression. Furthermore, the present work also considered the assumption that emotion detection can reveal driver's distraction with particular criticality in the presence of anger, sadness, and emotional agitation, as stated by Dingus et al [30] in their work about crash risk factors, and, on the contrary, the concentration can be associated with the neutral expression.…”
Section: Methodsmentioning
confidence: 99%
“…Roohi et al [25] introduced a deep learning-based methodology to analyze players' facial expressions and verify that neural networks, trained with the common six basic emotions, could link the brief moments of intense concentration required to kill enemies to the expression of anger. Sharma et al [26] proposed a system to figure out the concentration level of students in front of a webcam, identifying concentration with the neutral facial expression. Furthermore, according to Kowalczuk et al [22], emotions are suppressed over time, hence emotion detection can reveal distraction in specific scenarios.…”
Section: Introductionmentioning
confidence: 99%
“…Những nghiên cứu liên quan đến cảm xúc, có thể kể đến, Turabzadeh và cộng sự [12] dựa trên nhận dạng cảm xúc khuôn mặt trong thời gian thực, sử dụng thuật toán mẫu nhị phân cục bộ (Local Binary Point -LBP), Kamath, Biswas và Balasubramania [13] sử dụng thuật toán phát hiện khuôn mặt Vilola Jones để phân tích hình ảnh đầu vào và sau đó là biểu đồ phân định hướng (HOG, Sharma và cộng sự đã đề xuất một hệ thống thời gian thực, dựa trên những biểu hiện cảm xúc trên khuôn mặt, để kiểm tra sự tham gia của học sinh trong bối cảnh học tập điện tử, tự động điều chỉnh nội dung theo mức độ tập trung của học sinh, bằng cách phân tích cảm xúc của học sinh và đưa ra ba mức độ tập trung khác nhau (cao, trung bình và thấp) [14].…”
Section: Giới Thiệuunclassified
“…Being alone in front of a screen in an online learning environment is a huge challenge for students. A prototype was proposed by Sharma et al (2018) to determine students' attention level in real-time by using their facial expressions during an online lecture. They experimented with testing the framework of the prototype.…”
Section: Facial Coding and Learning Performancementioning
confidence: 99%