IEEE International Conference on Advanced Learning Technologies, 2004. Proceedings.
DOI: 10.1109/icalt.2004.1357461
|View full text |Cite
|
Sign up to set email alerts
|

Student modeling using principal component analysis of SOM clusters

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 19 publications
0
3
0
2
Order By: Relevance
“…Kümele analizinin amacı, küme içi uzaklıkları azaltıp, kümeler arası uzaklıkları artırarak, kendi içerisinde benzerlik gösteren elemanlardan oluşan farklı kümeler elde etmektedir (Chien-Sing ve Singh, 2004). Kümeleme analizinde verinin kaç farklı kümeye ayrılacağının belirlenmesi konusunda ise iki farklı yaklaşım bulunmaktadır.…”
Section: Veri Analiziunclassified
“…Kümele analizinin amacı, küme içi uzaklıkları azaltıp, kümeler arası uzaklıkları artırarak, kendi içerisinde benzerlik gösteren elemanlardan oluşan farklı kümeler elde etmektedir (Chien-Sing ve Singh, 2004). Kümeleme analizinde verinin kaç farklı kümeye ayrılacağının belirlenmesi konusunda ise iki farklı yaklaşım bulunmaktadır.…”
Section: Veri Analiziunclassified
“…Yet another way to improve the interpretation of resulting SOM map is to use "two-level clustering" (using the SOM map as a preprocessor for other clustering and analyzing techniques, such as principal components analysis; Lee & Singh, 2004) or for regression-based techniques as in this study. Yet another way to improve the interpretation of resulting SOM map is to use "two-level clustering" (using the SOM map as a preprocessor for other clustering and analyzing techniques, such as principal components analysis; Lee & Singh, 2004) or for regression-based techniques as in this study.…”
Section: A Component Plane Consists Of the Values Of A Single Vector mentioning
confidence: 99%
“…For a detailed explanation on PCA and how to implement it, please see (Smith 2002, Martinez, & Martinez 2005. PCA can be used as a pre- (Kirt, Vainik & Võhandu, 2007;Sommer & Golz, 2001) and post- (Kumar, Rai & Kumar 2005;Lee & Singh, 2004) processor for SOM. Additionally, a SOM has been created to combine the capabilities of both PCA and SOM (López-Rubio, Muñoz-Pérez, Gómez-Ruiz, 2004).…”
Section: Pattern Identification and Clusteringmentioning
confidence: 99%