Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Past several decades have driven modernization of technology and machinery. This modernization has pushed the limits of our technology and increased our dependence on the energy. Additional side-effect of this rapid growth has been an exponential increase in the generated heat of the modern machinery.In most cases this waste heat is simply released into the environment. Numerous research groups have pursued an idea of capturing and converting the waste heat. Thermoelectric, pyroelectrics, organic Rankine cycle (ORC), and several other methods have been proposed to capture and convert the waste heat into electricity. Presently, all methods, however, have low conversion efficiency and are not economically feasible.In this work we focused on a practical approach to convert mid-IR electromagnetic waves to electricity. It is based on inexpensive thin film technology utilizing a junction between a narrow bandgap lead salt and wide bandgap chalcogenide film.Lead sulfide (PbS) was chosen as the narrow band semiconductors for the IR energy conversion.Lead salt photodetectors uniquely demonstrate high room temperature sensitivity to black-body sources in low temperatures and high internal quantum efficiency (QE). Further, the peculiar band structure of the lead salt allows for small Auger recombination and minimized losses.Due to its favorable opto-electrical properties and band compatibility with PbS, cadmium sulfide (CdS) was chosen as the wide bandgap semiconductor for this work.This work has shown that high quality nanocrystalline thin films of lead sulfide (PbS) and cadmium sulfide (CdS) can be grown cost efficiently using chemical bath deposition (CBD) method. Chemical bath seeding procedure was also developed in order to achieve reproducibility in the transport phenomena of the advanced materials. Seeding also allows these films to be deposited on any surface, including smooth flexible materials. Seeded kernels have shown to become the crystallization centers for both nanocrystalline films.Opto-electrical properties of the films were tuned in such a way to make the materials useful in a broad-band of the IR spectrum. We have shown that altering the parameters of the chemical bath deposition alters the grains hence changing the transport characteristics of the materials. We have shown that parameters of the chemical bath deposition can be optimized to produce highly sensitive thin films tuned to a specific range of the electromagnetic spectra.Novel transparent conducting oxide, Iridium (Ir) doped Titanium Oxide (TiO2) was developed in this work for the use in the optoelectronic device. Ir has been shown to be one of the most efficient dopants in thin films. Ir doped TiO2 has shown to have transport characteristics similar ii to those of the commonly used TCOs, with much higher optical transmittance in the infra-red range.Lastly devices were manufactured from the developed materials. TiO2/CdS/PbS/Au heterojunctions were manufactured and showed photoresponsivity. Device efficiencies were shown to depend on the...
Past several decades have driven modernization of technology and machinery. This modernization has pushed the limits of our technology and increased our dependence on the energy. Additional side-effect of this rapid growth has been an exponential increase in the generated heat of the modern machinery.In most cases this waste heat is simply released into the environment. Numerous research groups have pursued an idea of capturing and converting the waste heat. Thermoelectric, pyroelectrics, organic Rankine cycle (ORC), and several other methods have been proposed to capture and convert the waste heat into electricity. Presently, all methods, however, have low conversion efficiency and are not economically feasible.In this work we focused on a practical approach to convert mid-IR electromagnetic waves to electricity. It is based on inexpensive thin film technology utilizing a junction between a narrow bandgap lead salt and wide bandgap chalcogenide film.Lead sulfide (PbS) was chosen as the narrow band semiconductors for the IR energy conversion.Lead salt photodetectors uniquely demonstrate high room temperature sensitivity to black-body sources in low temperatures and high internal quantum efficiency (QE). Further, the peculiar band structure of the lead salt allows for small Auger recombination and minimized losses.Due to its favorable opto-electrical properties and band compatibility with PbS, cadmium sulfide (CdS) was chosen as the wide bandgap semiconductor for this work.This work has shown that high quality nanocrystalline thin films of lead sulfide (PbS) and cadmium sulfide (CdS) can be grown cost efficiently using chemical bath deposition (CBD) method. Chemical bath seeding procedure was also developed in order to achieve reproducibility in the transport phenomena of the advanced materials. Seeding also allows these films to be deposited on any surface, including smooth flexible materials. Seeded kernels have shown to become the crystallization centers for both nanocrystalline films.Opto-electrical properties of the films were tuned in such a way to make the materials useful in a broad-band of the IR spectrum. We have shown that altering the parameters of the chemical bath deposition alters the grains hence changing the transport characteristics of the materials. We have shown that parameters of the chemical bath deposition can be optimized to produce highly sensitive thin films tuned to a specific range of the electromagnetic spectra.Novel transparent conducting oxide, Iridium (Ir) doped Titanium Oxide (TiO2) was developed in this work for the use in the optoelectronic device. Ir has been shown to be one of the most efficient dopants in thin films. Ir doped TiO2 has shown to have transport characteristics similar ii to those of the commonly used TCOs, with much higher optical transmittance in the infra-red range.Lastly devices were manufactured from the developed materials. TiO2/CdS/PbS/Au heterojunctions were manufactured and showed photoresponsivity. Device efficiencies were shown to depend on the...
High power lasers are increasingly used for low cost fabrication of solar cell devices. High power laser processes generate crystal defects, which lower the cell efficiency. This study examines the effect of low power laser annealing for the removal of high power laser induced surface defects. The laser annealing behavior is demonstrated by the significant decrease of photoluminescence generated from dislocation-induced defects and the increase of band-to-band emission. This annealing effect is further confirmed by the X-ray diffraction peak reversal. The dislocation density is quantified by observing etch pits under the scanning electron microscope (SEM). For as-melted samples, the dislocation density is decreased to as low as 1.01×10 6 cm-2 after laser annealing, resulting in an excellent surface carrier lifetime of 920 μs that is comparable to the value of 1240 μs for the silicon starting wafer. For severely defective samples, the dislocation density is decreased by 4 times and the surface carrier lifetime is increased by 5 times after laser annealing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.